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Object recognition becomes impaired at faster presentation rates and here we show the neuroanatomical
foci of where this might be exacerbated by sleep deprivation (SD). Twenty healthy human participants
were asked to detect a target house in serially presented house pictures that appeared at 1–15 images/s.
Temporal response profiles relating fMRI signal magnitude to presentation frequency were derived from
task-responsive regions. Following SD, the inverted U-shaped response profile within parahippocampal
place area was lower and peaked at a slower presentation rate than when participants slept normally. Con-
trastingly, SD did not shift the relatively monotonic early visual cortex responses. The intraparietal sulci but
not the frontal eye fields or medial frontal region, showed similar shifts in temporal response profiles fol-
lowing SD, suggesting differential contribution of areas mediating attention control towards limiting
rapid object processing. As nodes of the default mode network (DMN) continued to showmonotonically in-
creasing deactivation at higher presentation frequencies even following SD, the observed state modulations
of temporal responses likely represent temporal limitations in object processing as opposed to task
disengagement.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Introduction

Deficits in visual attention, accompanied by reductions in fronto-
parietal and visual extrastriate cortex activation, are among the most
robust neurobehavioral changes observed after one-night's sleep
deprivation (Chee et al., 2008, 2010; Lim et al., 2007; Tomasi et al.,
2009; Tucker et al., 2010). Associated alterations in visual processing
include effects on visual short term memory (Chee and Chuah,
2007), peripheral perceptual processing capacity (Kong et al.,
2011), distractor suppression (Kong et al., 2012), and tracking
moving-objects (Tomasi et al., 2009). Although it is clear that
attention facilitates perception (Kastner and Ungerleider, 2000;
Reynolds and Chelazzi, 2004), the effect of SD on the rate at which
we can process visual information remains unexplored. The visual
system processes information with amazing rapidity, such that we
can identify a single flashed object appearing for as briefly as 20 ms
(Thorpe et al., 1996), a speed unrivaled by most man-made systems
(Grill-Spector and Kanwisher, 2005; Thorpe et al., 1996). The associ-
ated ability to process serially presented images briefly separated in
time is of interest here given the relevance of this faculty in tasks
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performed by sleep-deprived persons such as threat detection or
rapid radiologic diagnosis.

Rapid Serial Visual Presentation (RSVP) sequences of faces and
houses have been used to identify loci exhibiting temporal processing
limitations within visual cortex. The hierarchical organization of visual
cortex whereby neurons in higher visual areas respond to increasingly
complex stimulus features or object classes, suggests a progressive
loss of sensitivity at higher presentation rates in higher areas like the
parahippocampal place area (PPA). Accordingly, temporal limitations
in processing involving the PPA and face areas have been demonstrated
using fMRI (Gauthier et al., 2012; McKeeff et al., 2007).

We examined how sleep deprivation (SD) affects visual object
processing by having participants view serially presented house
pictures at different rates. Visual cortex activation can be expected
to increase with greater sensory stimulation at higher presentation
rates. However, when processing capacity is limited, activation
will decline at faster presentation rates, resulting in an inverted
u-shaped temporal response profile. We would further expect a
lower peak as well as a leftward shift of response profile during
SD. Contrastingly, in areas where visual processing is not limited
at the presentation frequencies tested, a monotonic increase in ac-
tivation would be expected. As cognitive models posit a second
stage of identification, recognition, and report of visual stimuli be-
yond perceptual analysis (Chun and Potter, 1995; Marois et al.,
2004b), we also studied fronto-parietal areas previously shown to
be affected by SD. Finally, we assessed whether ‘reduced visual
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Fig. 1. Schematic of the experimental task. Sequences of house images were presented at
six different presentation rates: 1, 2, 4, 6, 8.5 and 15 images/s. At the end of each sequence,
participants reported which of the two targets was present.
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processing capacity’ could have resulted from disrupted task
engagement by examining responses in default mode regions to
increasing rate of picture presentation.

Materials and methods

Participants

Twenty healthy right-handed participants (mean age 22.95 ±
1.55 years; 7 females) took part in this study. All participants
provided informed consent, in compliance with a protocol approved
by the National University of Singapore Institutional Review Board.
They were selected from respondents to a web-based questionnaire
who: (1) were right-handed, (2) had regular sleeping habits,
(3) slept no less than 6.5 h/night, (3) were not on any long-term
medications, (4) had neither symptoms nor history of sleep
disorders, (5) had no history of psychiatric or neurologic disorders,
(6) drank less than 3 caffeinated drinks per day and (7) were not
of an extreme chronotype as assessed by the Horne–Östberg
Morningness–Eveningness questionnaire (Horne and Östberg,
1976), i.e. having a score between 35 and 65. The sleeping pattern
of each participant was monitored throughout the entire duration
of the study and only those whose actigraphy (Actiwatch, Philips
Respironics, USA) data indicated habitual good sleep (i.e., sleeping
no later than 12:30 AM and waking no later than 9:00 AM) were re-
cruited following informed consent. All participants indicated that
they did not smoke, consume any medication, stimulants, caffeine
or alcohol for at least 24 h prior to scanning.

Study procedure

Participantsmade three visits to the laboratory. The first was a brief-
ing session during which they were informed about the study protocol
and requirements. Eligible persons practiced one run of the study task.
At the end of this session, they were given a wrist actigraph to wear
throughout the study.

Participants were scanned twice, once during rested wakefulness
(RW) and once following SD. The order of the scanswas counterbalanced
across participants, and the sessions were separated by a minimum of
one week to minimize residual effects of sleep deprivation on cognition
for participants who underwent the SD session first.

RW scans took place at 8:00 AM. Participants arrived at the lab-
oratory at 9:30 PM the night prior to the morning scan and were
given a 9-hour sleep opportunity in a dark, quiet, air-conditioned
room. For the SD session, participants arrived at the laboratory at
7:00 PM, after staying awake the whole day without napping.
They were subsequently monitored in the laboratory. SD scans
took place at about 6:00 AM the next day.

The scanning times were deliberately chosen as they represent
the typical start time of a regular workday and the time when vigi-
lance hits a nadir after a night of sleep deprivation (Doran et al.,
2001; Graw et al., 2004). The effects described here represent a
combination of homeostatic and circadian effects on neurobehav-
ioral performance intended to simulate the difference in perfor-
mance obtained at the start of the work day for a young adult and
the effect of having to work through a night shift without sleep.
During the SD session, participants were allowed to engage in
non-strenuous activities such as reading, watching videos and con-
versing under artificial lighting of about 200 lux (office level light).
Vigorous physical activity prior to the scans was not permitted.
Every hour throughout the study night, participants performed a
short battery of psychometric tests consisting of the Psychomotor
Vigilance Task (Dinges et al., 1997), a Likert-type rating scale (0–10)
of motivation, fatigue and mood, and the Karolinska Sleepiness Scale
(Åkerstedt and Gillberg, 1990).
Experimental design

The experiment investigated how SD influenced temporal process-
ing limits. Each experimental session (RW or SD) comprised six runs,
each of 288 s duration. Prior to each run, participants were asked to
memorize two house targets. A short recognition test was administered
to ensure that these were remembered prior to scanning.

During each functional imaging run, participants viewed RSVP
sequences of gray-scale house images (10° × 10°) that appeared at 1,
2, 4, 6, 8.5 or 15 images/s (monitor frame rate, 60 Hz). Each 8-s trial
consisted of a 4-s RSVP sequence and a 4-s fixation period (Fig. 1).
Images were presented through MR-compatible LCD goggles (Nordic
Neurolab, Bergen, Norway). In addition to these picture-containing
sequences were two ‘blank’ trials that contained only a fixation
cross, to vary the inter-trial intervals. The eight trial types were
counterbalanced so that each was equally likely to be preceded and
followed by every other trial type. In total, there were 26 trials of each
presentation frequency. This was to ensure that even in SD where mis-
sesmight be expected, each trial type contributed at least 20 trials to the
model.

Only one target was present in each RSVP sequence. At the end of
each sequence, participants were required to report which of these
two target houses was presented (2AFC). They were instructed to re-
spond as accurately and as quickly as possible, using their right index
andmiddle fingers via aMR-compatible response box (Current Designs,
Philadelphia, USA). An eye camera (Nordic Neurolab, Bergen, Norway)
was used to continuously monitor for eyelid closures. Participants
were prompted through the intercom system whenever they failed to
respond to two consecutive trials. While auditory alarms can arouse,
they are absolutely necessary. To mitigate these effects, we limited the
range of lapsing allowed of our subjects, effectively compressing the
range of detectable effects. Participants who had a 20% non-response
rate or greater were eliminated from the study.
Functional localizer

Functional localizer scanswere collected in a separate session. These
were used to identify the PPA for each individual participant usingwell-
documented procedures (Epstein and Kanwisher, 1998; Kanwisher
et al., 1997; Tong et al., 1998). Each session comprised two 328-s runs,
each of which consisted of 16 alternating house and face blocks. Twenty
house or face images were shown in each block. Images used in the
localizer runs had identical dimensions as those used in themain exper-
iment (10° × 10°). Each image appeared for 300ms followed by 500ms



Fig. 2. Behavioral results. (A) Performance was impaired both during sleep deprivation
and at higher presentation frequencies. (B) Significant state by rate interaction was pres-
ent for response time.
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of fixation. After every four blocks of presentation, a 16-s fixation period
followed.

Imaging procedure

Structural and functional imageswere acquired on a 3-Tesla TimTrio
system (Siemens, Erlangen, Germany) using a 12-channel head coil.

Functional images were collected using a gradient echo-planar imag-
ing sequencewith TR 2000ms, TE 30ms, FA 75°, FOV 192 × 192mmand
a 64 × 64 matrix. For each functional volume, thirty-six oblique axial
slices (3 mm thick with a 0.3 mm inter-slice gap) parallel to the AC-PC
line were acquired. High-resolution coplanar T1-weighted anatomical
images were also obtained. Finally, a high-resolution anatomical refer-
ence image was acquired using an MPRAGE sequence (TR 2300 ms, TI
900 ms, flip angle 9°, BW 240 Hz/pixel, resulting voxel dimensions: 1.0
× 1.0 × 1.0 mm).

Data analysis

The functional images were processed using Brain Voyager QX
version 1.10.4 (Brain Innovation, Maastricht, the Netherlands) and cus-
tom routines written in MATLAB R2012a (Version 8.0) (Mathworks).
After serially inspecting each functional volume for gross intensity
fluctuations and movement, the image data was preprocessed using
rigid-bodymotion correction (trilinear and sinc interpolation; corrected
relative to first volume after the coplanar image), slice scan time correc-
tion, spatial smoothing (4 mm FWHM Gaussian kernel), and temporal
high-pass filtering (3 cycles per run). Automatic co-registration of the
anatomical and functional images was checked and adjusted manually,
after which the images were then transformed into Talairach space.

Imaging data analyzed using a general linear model with 12 main
predictors, one for each presentation frequency/condition (1, 2, 4, 6,
8.5 and 15 images/s) in each of the two states. Missed trials were
modeled using a separate predictor. Each predictor was created by
convolving a boxcar function of 4 s duration, with a canonical double-
gamma hemodynamic response function.

To examine the response profile across presentation rates, regions of
interest (ROIs) were first defined from the conjunction map of RW
and SD activation [(activation in all conditions during RW N RWbaseline)
∩ (activation in all conditions during SD N SD baseline)] (Nichols et al.,
2005). This map showed task activated areas shared across both
states. These ROIs included regions within the fronto-parietal attention
network – intraparietal sulcus (IPS), frontal eye field (FEF), and medial
frontal gyrus (MeFG) – and regionswithin the default mode network, in-
cluding posterior cingulate cortex (PCC) and the inferior parietal lobule
(IPL). Cubes of edge 9 mm centered on the peak voxel (p b 10−8, uncor-
rected) around each peak constituted each ROI. The PPA in each hemi-
sphere was individually defined with functional localizer scans
(contrast: house N face). The early visual cortex was defined by drawing
a cube of edge 9 mm centered on the each calcarine sulcus.

Temporal response profiles were constructed for each participant,
region of interest, and state (RW and SD). These profiles showed activa-
tion (parameter estimates for each predictor) as a function of image
presentation frequency. We hypothesized that humans process rapidly
presented pictures less well when sleep deprived compared to when
they are well-rested. As the instantiation of our hypothesis hinges on
the demonstration of statistically significant leftward shift in the tempo-
ral response profiles, we showed this using three approaches.

First, we identified the presentation frequency (1, 2, 4, 6, 8.5 or
15 images/s) at which the highest fMRI activation was observed in a
given ROI and for a given participant. This frequency: fi, max, was deter-
mined separately for each state (fi, RW_max, fi, SD_max). A two-tailed paired
t-test was used to determine whether presentation frequency differed
significantly across RW and SD.

Second, a permutation test was conducted to ascertain the prob-
ability that the frequency at which activation peaked differed across
the two states by chance. As previously described, we first deter-
mined the presentation frequency associated with the maximal acti-
vation in each state and for each participant: (f1, RW_max, f1, SD_max),
…, (fn, RW_max, fn, SD_max), where n = number of participants. The
t-value of the paired t-test comparing values in this array specified
tobs.

Permutations were generated by swapping fi, RW_max and fi, SD_max

across the 20 participants in a random manner while ensuring that a
given permutation was not repeated. A paired t-test was carried out
for each permutation to yield tperm which was then compared with
the observed data (tobs). The p-value of the permutation test was de-
fined as: Count (tperm≥ tobs) / k, where k is the number of permutations
tested. We tested 5000, 10,000 and 20,000 permutations.

A quadratic function was used to fit the response profiles obtained
for each subject and ROI. Presentation rates were natural log trans-
formed in order to allow estimation of the peak/trough of the temporal
response profile in each ROI. Each fit was bounded by theminimumand
maximumpresentation rates used in the study. The state-related shift in
the function's peak was compared in each region using a paired t-test.

To compare the curvilinearity of the temporal response profile in
each ROI, group level fMRI responses across the six different presenta-
tion frequencies in each ROI weremodeled by both linear and quadratic
functions. Corrected Akaike information criterion (AICc) values were
calculated (Akaike, 1974) and ΔAICc = AICc − AICc_min was used to
compare the different models (Burnham and Anderson, 2002).
Results

Behavioral results

In RW, participants had a non-response rate 0.5% of all trials, while in
SD this increased to an average of 8%. Across the 20 participants and
both RW and SD sessions, we only encountered 7 cases of participants
who failed to respond to two consecutive trials and required prompting.

image of Fig.�2


Fig. 3. (A) Temporal response profiles across state in PPA. Parameter estimates are in arbitrary units. Group activation map showing the PPA, thresholded at p b 0.000005, uncorrected
(average peak Talairach co-ordinates, left PPA:−30,−48,−5; right PPA: 25,−46,−6). (B) Temporal response profiles across state in the early visual cortex. Group activationmap show-
ing early visual cortex, thresholded at p b 0.000005, uncorrected (average peak Talairach co-ordinates, left:−12,−91,−2, right: 9,−91, 4). Note that the y-axis scale has been cropped to
optimally display relevant activation magnitude values in the PPA and early visual cortex.
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There were main effects of state (F1, 19 = 21.37; p b 0.0001) and
presentation frequency (F5, 95 = 94.71; p b 0.0001; Fig. 2A) on target
detection accuracy. Accuracy was lower following sleep deprivation
and with higher presentation rates, reaching near-chance performance
around 15 images/s. There was a significant state by frequency interac-
tion on response time (F5, 95 = 5.27; p b 0.001) in addition to main ef-
fects of state (F1, 19 = 8.05; p b 0.05; slower in SD) and presentation
frequency (F5, 95 = 18.82; p b 0.0001; slower with higher presentation
rates; Fig. 2B).

Imaging findings

There weremain effects of presentation frequency (F5, 95= 34.64; p
b 0.0001) and state on PPA activation (F1, 19= 20.69; p b 0.0001; lower
during SD). There was also a significant state by rate interaction in the
PPA (F5, 95 = 2.39; p b 0.05), indicating that PPA temporal response
profiles differed across states (Fig. 3A).

Without assuming the form of the temporal response function, the
average presentation frequency at which the highest fMRI activation
Table 1
Paired t-tests comparing peaks/troughs of the temporal response profiles obtained from
different brain regions. Note the peak frequencies herewere obtained by assessing the fre-
quency at whichmaximum activation was observed for each individual and for each state
and region — these maxima were not derived from curve fitting c.f. main text.

Peak/trough Paired t-test

RW
(Images/s)

SD
(Images/s)

t-statistic
(df = 19)

p value

Early visual cortex 11.95 10.28 1.57 n.s.
PPA 5.83 4.15 3.84 p = 0.001
IPS 7.25 5.35 2.70 p b 0.05
FEF 8.33 6.90 0.94 n.s.
MeFG 9.23 8.68 0.49 n.s.
PCC 11.05 10.2 0.53 n.s.
IPL 9.93 9.35 0.38 n.s.
was observed in PPA was 5.83 images/s during RW and 4.15 images/s
during SD (t = 3.84, p = 0.001; Table 1).

Using a quadratic fit, the presentation frequency at which PPA
activation peaked was 5.1 images/s in RW and 3.8 images/s following
SD (t19 = 2.91, p b 0.01). Finally, permutation tests also showed that
there was a significant leftward shift in the temporal response profile
across states; corresponding p values for tests with 5000, 10,000 and
20,000 permutations were 0.0068, 0.0051 and 0.0038.

In contrast to responses in the PPA, early visual areas showed an in-
crease in activation with increasing presentation frequency within the
range tested (F5, 95 = 31.36; p b 0.0001). SD also attenuated activity
in early visual cortex (F1, 19= 10.13; p b 0.01). The shape of the tempo-
ral response function was monotonic rather than quadratic (Fig. 3B;
Table 2).

A three-way repeatedmeasures ANOVAwith brain region (PPA ver-
sus early visual areas), state and frequency as factors found significant
two-way interactions – region by state (F1, 19 = 22.67; p b 0.0001),
area by frequency (F5, 95 = 28.88; p b 0.0001) and state by frequency
(F5, 95 = 3.28; p b 0.001) – indicating that activation in PPA and early
visual cortex was differentially modulated by state and by presentation
frequency.

The fMRI temporal response profile in the IPS following SD resembled
the invertedU-shaped function found in PPA (Fig. 4A). Therewas a signif-
icant state by presentation frequency interaction (F5, 95= 2.29; p b 0.05)
in addition to main effects of frequency (F5, 95 = 6.22; p b 0.0001) and
state (F1, 19 = 9.61; p b 0.01). Similar to PPA, activation in IPS peaked at
a significantly slower rate during SD (t19 = 2.70; p b 0.05; Fig. 4A;
Table 1). Permutation testing was congruent with this finding; corre-
sponding p values for tests with 5000, 10,000 and 20,000 permutations
were 0.045, 0.038 and 0.034. It is possible that the temporal response
profile in RW was not quadratic because the ‘u-shape’ of the function
was beyond the tested range of frequencies.

Activation in FEF showed significantmain effect of state (F1, 19= 3.33;
p b 0.05) and presentation frequency (F5, 95 = 6.13; p b 0.0001).
In MeFG, there was a main effect of presentation frequency (F5, 95
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Table 2
We calculated Akaike information criterion (AICc) associated with linear and quadratic
model fits of temporal response profiles obtained from 7 brain regions:
parahippocampal place area (PPA), intraparietal sulcus (IPS), frontal eye field (FEF), and
medial frontal gyrus (MeFG), posterior cingulate cortex (PCC) and the inferior parietal
lobule (IPL). AICc differences, ΔAICc, were computed to ascertain if linear or quadratic
models better fit the data. If ΔAICc ≤ 2, the quadratic and linear models have
comparable explanatory power; if the values of (AICc_L − AICc_Q) lie between the range
of 4–7, a quadratic model is considered superior; and beyond this, we can safely rule out
the linear model as a plausible fit for the data compared to the quadratic model
(Burnham and Anderson, 2002).

RW SD

AICc_L AICc_Q ΔAICc AICc_L AICc_Q ΔAICc

Early visual cortex 76.8 78.6 1.8 143.0 143.5 0.5
PPA 163.0 144.2 18.8* 243.4 234.1 9.3*
IPS 180.5 180.0 0.5 235.4 229.5 5.9*
FEF 145.7 147.7 2.0 192.1 192.3 0.2
MeFG 140.7 140.8 0.1 155.2 157.3 2.1
PCC 132.0 133.8 1.8 145.9 147.0 1.1
IPL 169.3 168.7 0.6 185.9 187.6 1.7
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= 11.54; p b 0.0001) and a significant state by frequency interac-
tion (F5, 95 = 4.71; p b 0.001). However, in contrast to IPS, FEF
and MeFG did not show a significant drop in activation at the
highest presentation frequencies tested here, even following
sleep deprivation (Figs. 4B and C; Table 1).

To test whether the temporal profiles of PPA, IPS, FEF and MeFG
were better characterized by linear or quadratic functions, we calculat-
ed group-level AICs for these two models and compared delta AICs
(Table 2). Quadratic models described the temporal response profiles
significantly better than linear models in PPA in both states and IPS fol-
lowing SD, whereas the AIC values for bothmodels were comparable in
FEF andMeFG. Thus, there appeared to be differences in the curvilinear-
ity of the temporal response profiles, with quadratic profiles in posterior
regions and linear ones anteriorly (from PPA, IPS, FEF to MeFG).

Posterior cingulate cortex (PCC) and inferior parietal lobule (IPL),
nodes of the default mode network (DMN), showed task-induced
Fig. 4. Temporal response profiles across state in IPS, FEF andMeFG. Group activationmap show
co-ordinates, left IPS:−29, −57, 45; right IPS: 26,−57, 44; left FEF:−29, −6, 49; right FEF:
deactivation that was modulated by presentation frequency (Fig. 5).
Across both states, these regions showed monotonic increases in
deactivation with increasing presentation frequency (PCC: F5, 95 =
16.23, p b 0.0001; IPL: F5, 95 = 17.68, p b 0.0001; Table 1). There was a
significant main effect of state in both PPC and IPL regions (PCC:
F1, 19 = 5.69, p b 0.05; IPL: F1, 19 = 8.37, p = 0.01).
Discussion

Rapid serial visual presentation of house pictures allowed us to iden-
tify the neural correlates of reduced object processing speed following
sleep deprivation. SD had dissociable effects on the temporal response
profiles elicited from PPA and early visual cortex, with the PPA response
peaking at a lower rate following SD. A similar shift in temporal re-
sponse was observed in the IPS, suggesting that it may serve as or be af-
fected by a bottleneck of rapid visual object processing. A main effect of
state was present for task-related deactivation, but its monotonic
change with increasing presentation rate suggests that participants
remained engaged in the task even when sleep deprived.
Sleep deprivation slows rapid processing of complex images in higher
visual cortex

SD effects on visual processing speed likely result in reduced infor-
mation processing capacity. The simplest method of assessing the for-
mer is to determine the critical flicker fusion frequency (CFF), the
maximal rate at which consecutive flashes of light can be discerned as
separate (Landis, 1953). Variations of this technique have been used
to assay the effects of drugs in psychopharmacology applications. How-
ever, unlike RSVP picture sequences, CFF does not distinguish between
the contributions of early and higher visual cortex to processing
speed. This may be why testing critical fusion frequency using elemen-
tary stimuli has not shown consistent effects during total sleep depriva-
tion (Lee et al., 2002) or restricted sleep (Leonard et al., 1998).
s the IPS, FEF andMeFG, thresholded at p b 0.000005, uncorrected (average peak Talairach
29,−3, 50; MeFG:−3, 7, 48).

image of Fig.�4


Fig. 5. Temporal response profiles in regions showing task-induced deactivation (averaged peak Talairach co-ordinates, right IPL: 44,−64, 25; left IPL:−44,−63, 24; PCC:−6,−50, 27).
Group map thresholded at p b 0.000005, uncorrected.
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Early visual cortex rapidly processes low-level features (Boynton
et al., 1999; Grill-Spector and Malach, 2004; Ress and Heeger, 2003).
Consequently, even with short-duration stimuli presented at high fre-
quencies, early visual cortex can respond with increasing fMRI activa-
tion (Grill-Spector et al., 2000; McKeeff et al., 2007). As one traverses
the visual processing hierarchy, the complexity of visual representa-
tions increases (Grill-Spector, 2003), corresponding to greater depen-
dencies on earlier visual areas and longer processing times (Einhauser
et al., 2007; Todd et al., 2011). For example, the PPA gradually integrates
information relayed from the earlier visual regions to process complex
features implicit to houses (Einhauser et al., 2007; Epstein and
Kanwisher, 1998; Todd et al., 2011). As such, PPA activation increases
when more processing time is provided but this reaches an asymptote
at around 120 ms (Grill-Spector et al., 2000).

Unlike early visual cortex, which is highly responsive to target dura-
tions and transient signals such as blinks (Gawne and Martin, 2000),
higher visual areas are more sensitive to the stimulus onset asynchrony
(SOA) between a complex target and its trailing distractor (Grill-Spector
et al., 2000). This sensitivity may reflect the buffering of perceptual in-
formation in reverberatory neural circuits (Tallon-Baudry et al., 2001),
that supports additional information processing in higher visual areas.
Indeed, sufficiently long SOAs allow the integration of visual informa-
tion to continue after the disappearance of a briefly presented stimulus
(Gauthier et al., 2012). Furthermore, if stimulus duration is varied but
the SOA is held constant at a length sufficient for such integration to
occur, firing patterns in monkey superior temporal sulcus (STS) remain
indistinguishable across different presentation durations (Keysers et al.,
2005).

Contrastingly, if a new stimulus or a backward mask occurs before
the threshold stimulus duration, information processing is disrupted,
attenuating the associated neural response as well as impairing object
recognition (Ansorge et al., 2007; Gauthier et al., 2012; Keysers et al.,
2005). In the present experiment, we posit that fMRI activation declines
when the duration between successive stimuli drops below the mini-
mum required for successful processing and integration.

It follows that relative to early visual cortex, higher visual areas
like the PPAmay be more vulnerable to state-induced alterations in
brain function. As such, the current findings extend prior results
concerning the dissociated effects of sleep deprivation on early
and higher visual areas (Chee and Chuah, 2007; Chee et al., 2010;
Kong et al., 2011, 2012). Critically, in the present work, PPA activa-
tion was modulated by the interaction of state and presentation
frequency, instead of merely being attenuated across all conditions
as was observed with incrementing visual short-termmemory load
during SD (Chee and Chuah, 2007).

A related notion arising from the present study relates to ‘local sleep’
models of behavior in sleep-deprived participants, where stochastically
impaired behavior has been attributed to cortical columns spontane-
ously entering the ‘off’ state (Pigarev et al., 1997; Vyazovskiy et al.,
2011). These models have been proposed to explain behavioral lapses
that involve ‘all or none’ effects on behavior (Vyazovskiy et al., 2011;
Wee et al., 2013). However, another consequence of random neurons
entering the ‘off’ state is degraded quality of information processing.
This may occur when the functional redundancy of neuronal activation
is compromised in SD, thereby increasing the probability that sensory
information fails to be transmitted (Chee et al., 2011). Here, the reduced
temporal sensitivity of the PPA to high presentation frequencies con-
trasts with the relative preservation of responses at all frequencies in
the early visual cortex, suggesting that ‘quality’ of information process-
ing between these regions may be affected during the sleep deprived
state.
Visual processing limitations beyond the visual cortex

As fronto-parietal regions mediating attentional control show in-
creasing activity commensurate with task demands (Marois et al.,
2004a), one might expect IPS and FEF to show monotonically in-
creasing or saturating activation at higher presentation frequencies.
Against this prediction, the IPS exhibited a response function peak
that shifted to a lower presentation rate during SD. This result is
consistent with the proposal that in addition to its role in top-
down control of visual attention activity in fronto-parietal regions
is modulated by bottom-up visual processing (Sato et al., 2003). In-
deed, a combination of bottom-up perceptual information with
top-down goals and contexts are required to specify an object of in-
terest (Corbetta and Shulman, 2002).

It has also been proposed that visual perception occurs in two
stages, a first stage involving perceptual analysis and a second
stage requiring identification and recognition of visual events
(Chun and Potter, 1995; Marois et al., 2004b). Recent studies indi-
cate that identification and recognition of objects involve regions
other than visual cortex, particularly those traditionally imputed
with the control of attention. For example, the inferior IPS is recruit-
ed during a coarse object individuation stage while the superior IPS
is engaged in object identification that requires fine-resolution tar-
get information (Xu, 2009; Xu and Chun, 2009). Electrophysiologi-
cal recordings show independent parietal cortex contributions to
nonspatial functions such as visual categorization and the coding
of abstract category signals important for object recognition
(Rishel et al., 2013).

Accordingly, the present finding of altered temporal response
profiles in the IPS is consistent with the existence of visual process-
ing bottlenecks at loci beyond the visual cortex (Marois et al.,
2004b). Interestingly, the extent to which activation associated
with increasing presentation speed departs from linear was most
pronounced in the PPA followed by the IPS but sparing FEF and
MeFG. This might reflect a hierarchical organization of perceptual
processing and top-down target specification characteristics involv-
ing these different areas.

image of Fig.�5
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Relative integrity of task engagement

When inferring processing limitations from parametric designs of
increasing load, a perennial concern is whether attenuated activation
under conditions of higher perceptual or cognitive load reflects capacity
constraints of interest, or merely volunteer disengagement. In the cur-
rent dataset, two findings make the latter account improbable. First, as
alluded to earlier, the shift in PPA's temporal response profile cannot
be explained by a simple loss of interest in the task during sleep depri-
vation, as the function's overall shapewas virtually identical in the same
participants when well rested. Second, the pattern of signal changes in
the default mode network (DMN) suggests continued task engagement
across presentation rates, even in the sleep-deprived state.

As components of the DMN, the posterior cingulate cortex/precuneus
(PCC) and bilateral inferior parietal lobule (IPL) are deactivated during
externally-oriented, attention-demanding tasks (Raichle et al., 2001;
Shulman et al., 1997). The magnitude of such DMN deactivation reflects
the allocation of resources to fulfill task demands (McKiernan et al.,
2003; Takeuchi et al., 2011). Contrastingly, mind-wandering and
internally-directed cognition have been associated with DMN engage-
ment (Mason et al., 2007). Here, task-induced deactivation in the PCC
and bilateral IPL monotonically tracked increasing presentation rates,
suggesting relatively preserved task engagement even in SD. Hence, al-
though the overall deactivation in DMN activity was reduced following
SD, there was a progressive increase in deactivationwith increasing pre-
sentation frequency. This makes it less likely that the participants ‘tuned
out’ from the more difficult, faster presentation frequencies. This could
give rise to a leftward shift in the temporal response profiles in the PPA
that is unrelated to reduced ability to rapidly process visual information.

Conclusion

Visual processing speed declines in the sleep-deprived state.
Information processing bottlenecks occur in higher ‘visual’ areas that
process objects and may involve ‘attention’ regions as well. These
changes in visual processing are not readily attributable to task disen-
gagement and likely reflect the overall reduction in the number of func-
tional neural circuits that can be recruited in the sleep-deprived state.
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